Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 298(10): 102453, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36063996

RESUMO

The fungal pathogen Cryptococcus neoformans is a leading cause of meningoencephalitis in the immunocompromised. As current antifungal treatments are toxic to the host, costly, limited in their efficacy, and associated with drug resistance, there is an urgent need to identify vulnerabilities in fungal physiology to accelerate antifungal discovery efforts. Rational drug design was pioneered in de novo purine biosynthesis as the end products of the pathway, ATP and GTP, are essential for replication, transcription, and energy metabolism, and the same rationale applies when considering the pathway as an antifungal target. Here, we describe the identification and characterization of C. neoformans 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase/5'-inosine monophosphate cyclohydrolase (ATIC), a bifunctional enzyme that catalyzes the final two enzymatic steps in the formation of the first purine base inosine monophosphate. We demonstrate that mutants lacking the ATIC-encoding ADE16 gene are adenine and histidine auxotrophs that are unable to establish an infection in a murine model of virulence. In addition, our assays employing recombinantly expressed and purified C. neoformans ATIC enzyme revealed Km values for its substrates AICAR and 5-formyl-AICAR are 8-fold and 20-fold higher, respectively, than in the human ortholog. Subsequently, we performed crystallographic studies that enabled the determination of the first fungal ATIC protein structure, revealing a key serine-to-tyrosine substitution in the active site, which has the potential to assist the design of fungus-specific inhibitors. Overall, our results validate ATIC as a promising antifungal drug target.


Assuntos
Criptococose , Cryptococcus neoformans , Hidroximetil e Formil Transferases , Fosforribosilaminoimidazolcarboxamida Formiltransferase , Animais , Humanos , Camundongos , Antifúngicos , Cryptococcus neoformans/enzimologia , Cryptococcus neoformans/genética , Descoberta de Drogas , Inosina Monofosfato , Fosforribosilaminoimidazolcarboxamida Formiltransferase/química , Fosforribosilaminoimidazolcarboxamida Formiltransferase/genética , Fosforribosilaminoimidazolcarboxamida Formiltransferase/metabolismo , Purinas , Criptococose/metabolismo
2.
Biochemistry ; 52(30): 5133-44, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23869564

RESUMO

Glycinamide ribonucleotide transformylase (GAR Tfase) is a folate-dependent enzyme in the de novo purine biosynthesis pathway, which has long been considered a potential target for development of anti-neoplastic therapeutics. Here we report the biological and X-ray crystallographic evaluations of both independent C10 diastereomers, 10S- and 10R-methylthio-DDACTHF, bound to human GAR Tfase, including the highest-resolution apo GAR Tfase structure to date (1.52 Å). Both diastereomers are potent inhibitors (Ki = 210 nM for 10R, and Ki = 180 nM for 10S) of GAR Tfase and exhibit effective inhibition of human leukemia cell growth (IC50 = 80 and 50 nM, respectively). Their inhibitory activity was surprisingly high, and these lipophilic C10-substituted analogues show distinct advantages over their hydrophilic counterparts, most strikingly in retaining potency in mutant human leukemia cell lines that lack reduced folate carrier protein activity (IC50 = 70 and 60 nM, respectively). Structural characterization reveals a new binding mode for these diastereoisomers, in which the lipophilic thiomethyl groups penetrate deeper into a hydrophobic pocket within the folate-binding site. In silico docking simulations of three other sulfur-containing folate analogues also indicate that this hydrophobic cleft represents a favorable region for binding lipophilic substituents. Overall, these results suggest sulfur and its substitutions play an important role in not only the binding of anti-folates to GAR Tfase but also the selectivity and cellular activity (growth inhibition), thereby presenting new possibilities for the future design of potent and selective anti-folate drugs that target GAR Tfase.


Assuntos
Antimetabólitos Antineoplásicos/química , Carbono-Nitrogênio Ligases/química , Inibidores Enzimáticos/química , Modelos Moleculares , Fosforribosilglicinamido Formiltransferase/química , Tetra-Hidrofolatos/química , Antimetabólitos Antineoplásicos/metabolismo , Antimetabólitos Antineoplásicos/farmacologia , Apoproteínas/antagonistas & inibidores , Apoproteínas/química , Apoproteínas/metabolismo , Sítios de Ligação , Carbono-Nitrogênio Ligases/antagonistas & inibidores , Carbono-Nitrogênio Ligases/genética , Carbono-Nitrogênio Ligases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Concentração Inibidora 50 , Leucemia/tratamento farmacológico , Leucemia/enzimologia , Conformação Molecular , Simulação de Acoplamento Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Fosforribosilaminoimidazolcarboxamida Formiltransferase/antagonistas & inibidores , Fosforribosilaminoimidazolcarboxamida Formiltransferase/química , Fosforribosilaminoimidazolcarboxamida Formiltransferase/genética , Fosforribosilaminoimidazolcarboxamida Formiltransferase/metabolismo , Fosforribosilglicinamido Formiltransferase/antagonistas & inibidores , Fosforribosilglicinamido Formiltransferase/genética , Fosforribosilglicinamido Formiltransferase/metabolismo , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade , Tetra-Hidrofolatos/metabolismo , Tetra-Hidrofolatos/farmacologia
3.
Chembiochem ; 13(11): 1628-34, 2012 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-22764122

RESUMO

Aminoimidazole carboxamide ribonucleotide transformylase/inosine monophosphate cyclohydrolase (ATIC) is a bifunctional homodimeric enzyme that catalyzes the last two steps of de novo purine biosynthesis. Homodimerization of ATIC, a protein-protein interaction with an interface of over 5000 Å(2), is required for its aminoimidazole carboxamide ribonucleotide (AICAR) transformylase activity, with the active sites forming at the interface of the interacting proteins. Here, we report the development of a small-molecule inhibitor of AICAR transformylase that functions by preventing the homodimerization of ATIC. The compound is derived from a previously reported cyclic hexapeptide inhibitor of AICAR transformylase (with a K(i) of 17 µM), identified by high-throughput screening. The active motif of the cyclic peptide is identified as an arginine-tyrosine dipeptide, a capped analogue of which inhibits AICAR transformylase with a K(i) value of 84 µM. A library of nonnatural analogues of this dipeptide was designed, synthesized, and assayed. The most potent compound inhibits AICAR transformylase with a K(i) value of 685 nM, a 25-fold improvement in activity from the parent cyclic peptide. The potential for this AICAR transformylase inhibitor in cancer therapy was assessed by studying its effect on the proliferation of a model breast cancer cell line. Using a nonradioactive proliferation assay and live cell imaging, a dose-dependent reduction in cell numbers and cell division rates was observed in cells treated with our ATIC dimerization inhibitor.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Inibidores Enzimáticos/farmacologia , Peptídeos Cíclicos/farmacologia , Fosforribosilaminoimidazolcarboxamida Formiltransferase/química , Multimerização Proteica/efeitos dos fármacos , Antineoplásicos/síntese química , Antineoplásicos/química , Domínio Catalítico/efeitos dos fármacos , Contagem de Células , Divisão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Células MCF-7 , Estrutura Molecular , Peso Molecular , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Fosforribosilaminoimidazolcarboxamida Formiltransferase/antagonistas & inibidores , Fosforribosilaminoimidazolcarboxamida Formiltransferase/metabolismo , Relação Estrutura-Atividade
4.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 67(Pt 12): 1590-4, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22139174

RESUMO

In bacteria and eukaryotes, the last two steps of de novo purine biosynthesis are catalyzed by bifunctional purine-biosynthesis protein (PurH), which is composed of two functionally independent domains linked by a flexible region. The N-terminal domain possesses IMP cyclohydrolase activity and the C-terminal domain possesses aminoimidazole-4-carboxamide ribonucleotide transformylase activity. This study reports the expression, purification, crystallization and preliminary X-ray crystallographic analysis of PurH from Escherichia coli with an N-terminal His(6) tag. The crystals diffracted to a maximum resolution of 3.05 Å and belonged to the monoclinic space group P2(1), with unit-cell parameters a = 76.37, b = 132.15, c = 82.64 Å, ß = 111.86°.


Assuntos
Escherichia coli/enzimologia , Fosforribosilaminoimidazolcarboxamida Formiltransferase/química , Sequência de Aminoácidos , Animais , Cristalização , Cristalografia por Raios X , Expressão Gênica , Humanos , Dados de Sequência Molecular , Fosforribosilaminoimidazolcarboxamida Formiltransferase/genética , Fosforribosilaminoimidazolcarboxamida Formiltransferase/isolamento & purificação , Alinhamento de Sequência
5.
Exp Biol Med (Maywood) ; 235(3): 271-7, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20404044

RESUMO

We postulate that 10-formyl-7,8-dihydrofolate (10-HCO-H(2)folate), not 10-formyl-5,6,7,8-tetrahydrofolate (10-HCO-H(4)folate), is the predominant in vivo substrate for mammalian aminoimidazolecarboxamide ribotide (AICAR) transformylase, an enzyme in purine nucleotide biosynthesis de novo, which introduces carbon 2 (C(2)) into the purine ring. 10-HCO-H(2)folate exists in vivo as labeled 10-formyl-folic acid (10-HCO-folic acid: an oxidation product of 10-HCO-H(4)folate and 10-HCO-H(2)folate) and is found after doses of labeled folic acid in humans or laboratory animals. The bioactivity of the unnatural isomer, [6R]-5-formyltetrahydrofolate, in humans is explained by its in vivo conversion to 10-HCO-H(2)folate. The structure and active site of AICAR transformylase are not consistent with other enzymes that utilize 10-HCO-H(4)folate. Because 10-HCO-H(4)folate is rapidly oxidized in vitro to 10-HCO-H(2)folate by cytochrome C alone and in mitochondria, it is hypothesized that this process takes place in vivo. In vitro data indicate that 10-HCO-H(2)folate is kinetically preferred over 10-HCO-H(4)folate by AICAR transformylase and that this enzyme may not have access to sufficient supplies of 10-HCO-H(4)folate. Methotrexate blockage of the AICAR transformylase process in patients with rheumatoid arthritis suggests that dihydrofolate (H(2)folate) reductase is involved and is consistent with H(2)folate and 10-HCO-H(2)folate being the product and substrate for AICAR transformylase. The labeling of purine C(2) by an oral dose of [6RS]-5-H[(13)C]O-H(4)folate in a human subject is consistent with 10-H[(13)C]O-H(2)folate formation from unnatural isomer, [6R]-5-H[(13)C]O-H(4)folate, and it being a substrate for AICAR transformylase. In vitro exchange reactions of purine C(2) using H(4)folate coenzymes are not duplicated in vivo and is consistent with H(2)folate coenzymes being used in vivo by AICAR transformylase.


Assuntos
Ácido Fólico/análogos & derivados , Fosforribosilaminoimidazolcarboxamida Formiltransferase/química , Administração Oral , Animais , Artrite Reumatoide/tratamento farmacológico , Carbono/química , Citocromos c/química , Ácido Fólico/química , Humanos , Cinética , Metotrexato/farmacologia , Mitocôndrias/metabolismo , Purinas/química , Proteínas Recombinantes , Especificidade por Substrato
6.
Int J Syst Evol Microbiol ; 59(Pt 2): 234-47, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19196760

RESUMO

The class Gammaproteobacteria, which forms one of the largest groups within bacteria, is currently distinguished from other bacteria solely on the basis of its branching in phylogenetic trees. No molecular or biochemical characteristic is known that is unique to the class Gammaproteobacteria or its different subgroups (orders). The relationship among different orders of gammaproteobacteria is also not clear. In this study, we present detailed phylogenomic and comparative genomic analyses on gammaproteobacteria that clarify some of these issues. Phylogenetic trees based on concatenated sequences for 13 and 36 universally distributed proteins were constructed for 45 members of the class Gammaproteobacteria covering 13 of its 14 orders. In these trees, species from a number of the subgroups formed distinct clades and their relative branching order was indicated as follows (from the most recent to the earliest diverging): Enterobacteriales >Pasteurellales >Vibrionales, Aeromonadales >Alteromonadales >Oceanospirillales, Pseudomonadales >Chromatiales, Legionellales, Methylococcales, Xanthomonadales, Cardiobacteriales, Thiotrichales. Four conserved indels in four widely distributed proteins that are specific for gammaproteobacteria are also described. A 2 aa deletion in 5'-phosphoribosyl-5-aminoimidazole-4-carboxamide transformylase (AICAR transformylase; PurH) was a distinctive characteristic of all gammaproteobacteria (except Francisella tularensis). Two other conserved indels (a 4 aa deletion in RNA polymerase beta-subunit and a 1 aa deletion in ribosomal protein L16) were found uniquely in various species of the orders Enterobacteriales, Pasteurellales, Vibrionales, Aeromonadales and Alteromonadales, but were not found in other gammaproteobacteria. Lastly, a 2 aa deletion in leucyl-tRNA synthetase was commonly present in the above orders of the class Gammaproteobacteria and also in some members of the order Oceanospirillales. The presence of the conserved indels in these gammaproteobacterial orders indicates that species from these orders shared a common ancestor that was separate from other bacteria, a suggestion that is supported by phylogenetic studies. Systematic blastp searches were also conducted on various open reading frames (ORFs) in the genome of Escherichia coli K-12. These analyses identified 75 proteins that were unique to most members of the class Gammaproteobacteria or were restricted to species from some of its main orders (Enterobacteriales; Enterobacteriales and Pasteurellales; Enterobacteriales, Pasteurellales, Vibrionales, Aeromonadales and Alteromonadales; and the Enterobacteriales, Pasteurellales, Vibrionales, Aeromonadales, Alteromonadales, Oceanospirillales and Pseudomonadales etc.). The genes for these proteins have evolved at various stages during the evolution of gammaproteobacteria and their species distribution pattern, in conjunction with other results presented here, provide valuable information regarding the evolutionary relationships among these bacteria.


Assuntos
Evolução Biológica , Gammaproteobacteria/classificação , Gammaproteobacteria/metabolismo , Genoma Bacteriano/genética , Genômica , Filogenia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , Mutação INDEL/genética , Dados de Sequência Molecular , Fosforribosilaminoimidazolcarboxamida Formiltransferase/química , Fosforribosilaminoimidazolcarboxamida Formiltransferase/genética , Alinhamento de Sequência , Especificidade da Espécie
7.
Biochemistry ; 47(1): 205-17, 2008 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-18069798

RESUMO

Purine biosynthesis requires 10 enzymatic steps in higher organisms, while prokaryotes require an additional enzyme for step 6. In most organisms steps 9 and 10 are catalyzed by the purH gene product, a bifunctional enzyme with both 5-formaminoimidazole-4-carboxamide ribonucleotide (FAICAR) synthase and inosine monophosphate (IMP) cyclohydrolase activity. Recently it was discovered that Archaea utilize different enzymes to catalyze steps 9 and 10. An ATP-dependent FAICAR synthetase is encoded by the purP gene, and IMP cyclohydrolase is encoded by the purO gene. We have determined the X-ray crystal structures of FAICAR synthetase from Methanocaldococcus jannaschii complexed with various ligands, including the tertiary substrate complex and product complex. The enzyme belongs to the ATP grasp superfamily and is predicted to use a formyl phosphate intermediate formed by an ATP-dependent phosphorylation. In addition, we have determined the structures of a PurP orthologue from Pyrococcus furiosus, which is functionally unclassified, in three crystal forms. With approximately 50% sequence identity, P. furiosus PurP is structurally homologous to M. jannaschii PurP. A phylogenetic analysis was performed to explore the possible role of this functionally unclassified PurP.


Assuntos
Proteínas Arqueais/metabolismo , Methanococcaceae/metabolismo , Fosforribosilaminoimidazolcarboxamida Formiltransferase/metabolismo , Ribonucleotídeos/biossíntese , Proteínas Arqueais/química , Proteínas Arqueais/genética , Sítios de Ligação , Cristalografia por Raios X , Methanococcaceae/classificação , Methanococcaceae/genética , Modelos Moleculares , Fosforribosilaminoimidazolcarboxamida Formiltransferase/química , Fosforribosilaminoimidazolcarboxamida Formiltransferase/genética , Filogenia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
8.
J Biol Chem ; 282(17): 13033-46, 2007 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-17324932

RESUMO

The inosine monophosphate cyclohydrolase (IMPCH) component (residues 1-199) of the bifunctional enzyme aminoimidazole-4-carboxamide ribonucleotide transformylase (AICAR Tfase, residues 200-593)/IMPCH (ATIC) catalyzes the final step in the de novo purine biosynthesis pathway that produces IMP. As a potential target for antineoplastic intervention, we designed IMPCH inhibitors, 1,5-dihydroimidazo[4,5-c][1,2,6]thiadiazin-4(3H)-one 2,2-dioxide (heterocycle, 1), the corresponding nucleoside (2), and the nucleoside monophosphate (nucleotide) (3), as mimics of the tetrahedral intermediate in the cyclization reaction. All compounds are competitive inhibitors against IMPCH (K(i) values = 0.13-0.23 microm) with the simple heterocycle 1 exhibiting the most potent inhibition (K(i) = 0.13 microm). Crystal structures of bifunctional ATIC in complex with nucleoside 2 and nucleotide 3 revealed IMPCH binding modes similar to that of the IMPCH feedback inhibitor, xanthosine 5'-monophosphate. Surprisingly, the simpler heterocycle 1 had a completely different IMPCH binding mode and was relocated to the phosphate binding pocket that was identified from previous xanthosine 5'-monophosphate structures. The aromatic imidazole ring interacts with a helix dipole, similar to the interaction with the phosphate moiety of 3. The crystal structures not only revealed the mechanism of inhibition of these compounds, but they now serve as a platform for future inhibitor improvements. Importantly, the nucleoside-complexed structure supports the notion that inhibitors lacking a negatively charged phosphate can still inhibit IMPCH activity with comparable potency to phosphate-containing inhibitors. Provocatively, the nucleotide inhibitor 3 also binds to the AICAR Tfase domain of ATIC, which now provides a lead compound for the design of inhibitors that simultaneously target both active sites of this bifunctional enzyme.


Assuntos
Proteínas Aviárias/antagonistas & inibidores , Inibidores Enzimáticos/química , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias/enzimologia , Fosforribosilaminoimidazolcarboxamida Formiltransferase/antagonistas & inibidores , Animais , Proteínas Aviárias/química , Proteínas Aviárias/metabolismo , Sítios de Ligação , Aves/metabolismo , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/uso terapêutico , Humanos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Nucleosídeos/síntese química , Nucleosídeos/química , Nucleosídeos/metabolismo , Nucleotídeos/síntese química , Nucleotídeos/química , Nucleotídeos/metabolismo , Fosforribosilaminoimidazolcarboxamida Formiltransferase/química , Fosforribosilaminoimidazolcarboxamida Formiltransferase/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Purinas/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...